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The work focuses on the transient forced vibration of a cantilever beam with a rigid eccentric
mass element attached at the free end. The Euler-Bernoulli beam theory and the viscoelastic
fractional Kelvin-Voigt material model are adopted. The equation of motion of the beam is
derived using Hamilton’s principle. The first eigenfunction of linear vibrations is used as an
approximate solution for the nonlinear vibrations. The equations of motion of the system
are solved numerically. The impact of the order of the fractional derivative on the beam
transient linear and nonlinear vibrations is studied.
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1. Introduction

Cantilever beams with a tip mass element are commonly used to model various engineering
structures, such as tall buildings, offshore structures, moving cranes, masts, accelerometers,
military airplane wings, accelerometers, Stockbridge dampers, energy harvesters, turbine blades
(Rama Bhat and Wagner, 1976; Erturk and Inman, 2011; Gürgöze and Zeren, 2011; Markiewicz,
1995; Seidel and Csepregi, 1984). This issue has been studied extensively by many researchers
for different variants of cantilever beams (Gürgöze and Zeren, 2011; Suzuki et al., 2021; Yang,
2017). However, many studies have omitted some important issues, such as the effects of material
damping and eccentricity on system dynamics. It is rather obvious that in some vibration studies
of such beam systems it is necessary to take eccentricity into account, namely that the center
of mass of the element does not coincide with its point of attachment to the end of the beam.
This eccentricity can affect dynamic properties of the analyzed system (Gürgöze and Zeren,
2011; Suzuki et al., 2021; Yang, 2017). Similarly, viscoelastic properties of the material may
significantly affect the dynamic behavior of the system, thus a proper viscoelastic material
model should be used in dynamic analysis. Some experiments revealed that numerous engineering
materials show a weak frequency dependence of their damping properties within a wide frequency
range (Torvik and Bagley, 1984; Caputo, 1967). The description of this feature is complicated,
and it is usually performed with the help of integer order derivatives (Caputo, 1967).
In recent decades, fractional calculus has been increasingly used in many scientific researches.

Fractional derivatives are widely utilized in mechanics of materials, control systems, mechatron-
ics, thermoelasticity, signal and image processing, engineering biology and many other (Fre-
undlich, 2016; Podlubny, 1999; Shen et al., 2022; Sumelka, 2016; Sumelka et al., 2020; Tayel and
Hassan, 2019). Since, fractional derivatives are not local, they are used for modeling of non-local
phenomena i.e. depending on the history process, therefore fractional derivatives are widely
used in a description of viscoelastic material behavior (Torvik and Bagley, 1984; Rossikhin and
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Shitikova, 2009). Fractional derivatives allows more accurate modeling of viscoelastic material
behavior in a wide range of frequencies (Torvik and Bagley, 1984; Caputo, 1967).
This paper presents a study of transient vibrations of a fractional cantilever beam with a rigid

mass element attached at its free end, whose center of mass does not coincide with the point of its
attachment. The study is a continuation and extension of the author’s earlier works (Freundlich,
2019, 2021). The mentioned works have been focused on vibration of a fractional viscoelastic
cantilever beam with an end mass element, whose center of gravity coincides with the point
of its attachment. In the first mentioned work, a fractional viscoelastic Kelvin-Voigt material
model was used (Freundlich, 2019), whereas the second work adopted a fractional viscoelastic
Zener material model (Freundlich, 2021). Therefore, this study is dedicated to transient dynamic
analysis of a cantilever beam having the end mass element, whose center of gravity is not
coincident with the point of its attachment.

2. Problem formulation

In this work, dynamic analysis of a homogeneous cantilever beam of length l having an eccentric
heavy element of mass mp and moment of inertia IB , which is attached at the beam free end
is presented. The mass center of the mass element does not coincide with the free end of the
beam, and there is an eccentricity of distance e (Fig. 1). The analyzed beam has uniform cross-

Fig. 1. Schematic of the analyzed beam

-section A and mass density ρ. The case of thin inextensible beam subjected to large deformation
is studied. The Euler-Bernoulli theory is assumed, namely, that the rotary inertia and shear
deformation are neglected. Moreover, the beam motion is assumed only in the xz-plane and that
the gravitational force is perpendicular to this plane, thus the gravitational force has no effect on
the beam motion. The viscoelastic beam material properties are assumed to be described using
a fractional Kelvin-Voigt model, which is defined below (Torvik and Bagley, 1984; Mainardi and
Spada, 2011)

σ(t) = E
(
ε(t) + µγD

(γ)(ε(t))
)

(2.1)

where σ(t) and ε(t) are the stress and strain functions of time, µγ is a time constant (Mainardi
and Spada, 2011), E is the relaxed modulus, t is time and D(γ)(·) is the Caputo fractional
derivative of the order γ, formulated as Eq. (2.2) (Caputo, 1967; Mainardi and Spada, 2011;
Podlubny, 1999). For integer order derivative i.e. γ = 1.0, time constant µγ reduces to retardation
time of the classical Kelvin-Voigt material. The unit of µγ is s

γ

D(γ)(f(t)) ≡
dγ

dtγ
(f(t)) ≡

1

Γ (M− γ)

t∫

0

D(M)(f(τ))

(t− τ)γ+1−M
dτ (2.2)

where Γ (M− γ) is the Euler gamma function (Podlubny, 1999), D(M)(f(·)) = (∂M/∂tM)(·) is
the M-th derivative of a function f(·) with respect to time, M is a positive integer number
satisfying the inequality M− 1 < γ <M, and t > 0.
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In the case of dissipative forces, the value of γ is assumed to be in the range 0 < γ ¬ 2
(Malendowski and Sumelka, 2023), however for many real viscoelastic materials, the order of
the fractional derivative is often assumed to be in the range 0 < γ ¬ 1 (Torvik and Bagley,
1984; Caputo, 1967) and thenM = 1. Eq. (2.2), where γ = 1.0 is in the case of an integer order
derivative (Mainardi and Spada, 2011; Podlubny, 1999).

Fig. 2. Schematic of a beam displacements

The kinematics of the considered beam is presented in Fig. 2. From kinematic analysis it
follows that

rdθ = ds →
1

r
= κ =

∂θ

∂s
= θ′ sin θ =

∂w

∂s
= w′ ⇒ θ = arcsinw′ (2.3)

where r is radius of curvature, κ is curvature.
Since the beam is assumed to be inextensible, therefore

cos θ =
u+ ds+ du− u

(1 + e)ds
=
ds+ du

(1 + e)ds
=
1 + u′

(1 + e)
for e = 0 cos θ = 1 + u′ (2.4)

then

κ = θ′ =
∂

∂s
(arcsinw′) =

1√
1− (w′)2

w′′ ≈ w′′
(
1 +
1

2
(w′)2

)
(2.5)

From the beam theory it follows that the strain is

ε(t) = −zκ = −zw′′
(
1 +
1

2
(w′)2

)
(2.6)

The extended Hamilton principle is utilized to obtain the equation of motion (Meirovitch, 1967)

t2∫

t1

(δT − δΠ + δL) = 0 (2.7)

where: δT and δΠ are variations of the system total kinetic and potential energy, respectively,
δL is the total virtual work done by non-conservative forces.
The total kinetic energy of the system is the sum of kinetic energy of the beam and the end

mass element. From literature it follows that the impact of beam longitudinal velocity u on the
total system kinetic energy can be omitted, thus the total system kinetic energy is expressed as

T =
1

2

l∫

0

mẇ2 dx+
1

2
mpẇ

2
C +
1

2
IC(θ̇C)

2 (2.8)

where over-dots ˙(·) and (̈·) mean the first and second derivatives with respect to time, m is mass
density per unit length, ẇ is velocity of the neutral beam axis point in z direction, ẇC is velocity
of the center of mass C of the end mass element, θ̇C is angular velocity of the end mass element
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(Fig. 1). Substituting the expression for time derivative of angle θ Eq. (2.3) into Eq. (2.8), the
kinetic energy reads

T =
1

2

l∫

0

mẇ2 dx+
1

2
mp

[(
−

1√
1− (w′B)

2
ẇ′Be sin θB

)2

+

(
ẇB +

1√
1− (w′B)

2
ẇ′Be cos θB

)2]
+
1

2
IC

(
1√

1− (w′B)
2
ẇ′B

)2 (2.9)

Using an approximate relationship

1√
1− (w′)2

≈ 1 +
1

2
(w′)2

the variation of the system kinetic energy is expressed as

δT = δ

(
1

2

l∫

0

mẇ2 ds +
1

2
(mpe

2 + IC)(ẇ
′

B)
2(1 + (w′B)

2) +
1

2
mp(ẇ

2
B + 2ẇBẇ

′

Be)

)
(2.10)

From the assumed beam model it follows that the total potential energy is the strain energy
of the beam. Utilizing relations (2.5) and (2.6), the variation of the beam strain energy can be
expressed as

Πb =
1

2

∫

A

l∫

0

Eε2 dAdx =
1

2

∫

A

l∫

0

E(z)2κ2 dAdx =
1

2

l∫

0

EJκ2 dx

⇒ δΠb = δ

(
1

2

l∫

0

EJ
(w′′)2

1− (w′)2
dx

)
≈ δ

(
1

2

l∫

0

EJ [(w′)2 + (w′′)2(w′)2] dx

) (2.11)

where E is Young’s modulus of the beam material, A is cross-section area of the beam, J is
cross-section moment of inertia with respect to the neutral beam axis.
Virtual work of non-conservative forces is a sum of work done by internal dissipation forces

and external forces acting on the beam, namely

δLnc = −

l∫

0

∫

A

σdisδε dA+

l∫

0

qδw ds

= −E′γJ

l∫

0

dγ

dtγ

[
w′′
(
1 +
1

2
(w′)2

)](
1 +
1

2
(w′)2

)
δ(w′′) ds

− E′γJ

l∫

0

dγ

dtγ

[
w′′
(
1 +
1

2
(w′)2

)]
w′′w′δ(w′) ds +

l∫

0

qδw ds

(2.12)

Substituting the expanded and transformed expression for variations of kinetic energy (Eq.
(2.10)), strain potential energy (Eq. (2.11)), and virtual work (Eq. (2.12)) into Hamilton’s
extended principle Eq. (2.7), the following equation of motion and boundary conditions of the
analyzed system is obtained

mẅ + EJw′′′′ + EJ [w′′′′(w′)2 + 6w′′w′′′w′ + 3(w′′)3]

+ E′γJ
{ dγ

dtγ

[
w′′′′

(
1 +
1

2
(w′)2

)
+ 3w′′w′′′w′ + (w′′)3

](
1 +
1

2
(w′)2

)}

+ E′γJ
dγ

dtγ

[
w′′′
(
1 +
1

2
(w′)2

)
+ (w′′)2w′

]
w′w′′ = q

(2.13)
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Boundary conditions are obtained directly from Hamilton’s principle, and for s = 0, the beam
deflection and slope equals 0, thus

w = w′ = 0 (2.14)

Whereas, the boundary conditions for s = l are as follows

−mpẅB −mpẅ
′

Be+ EJ [w
′′′ + w′′′(w′)2 + 2w′(w′′)2 − (w′′)2w′]

+ E′γJ
{ dγ

dtγ

[
w′′′
(
1 +
1

2
(w′)2

)
+ (w′′)2w′

](
1 +
1

2
(w′)2

)}

+ E′γJ
{ dγ

dtγ

[
w′′
(
1 +
1

2
(w′)2

)]
w′w′′ −

dγ

dtγ

[
w′′
(
1 +
1

2
(w′)2

)]
w′′w′

}
= 0

− (mpe
2 + JC)[ẅ

′

B(1 + (w
′

B)
2) + 2(ẇ′B)

2w′B ]−mpẅBe− EJ(w
′′ + w′′(w′)2)

− E′γJ
{ dγ

dtγ

[
w′′
(
1 +
1

2
(w′)2

)](
1 +
1

2
(w′)2

)}
= 0

(2.15)

By introducing dimensionless parameters

τ =

√
EJ

ρAl4
t = ct x̃ =

s

l
w̃ =
w

l

µ̃γ = µγ

√( EJ
ρAl4

)γ
= µγc

γ q̃ =
ql3

EJ
α =
mp
ρAl

β =
IC
ρAl3

z = kl η =
e

l

(2.16)

and substituting them into Eq. (2.13), the following dimensionless equation of motion is
obtained

∂2w̃

∂τ2
+
∂4w̃

∂x̃4
+
∂4w̃

∂x̃4

(∂w̃
∂x̃

)2
+ 6
∂2w̃

∂x̃2
∂3w̃

∂x̃3
∂w̃

∂x̃
+ 3

(∂2w̃
∂x̃2

)3
+ µ̃γ

{
dγ

dτγ

[
∂4w̃

∂x̃4

(
1 +
1

2

(∂w̃
∂x̃

)2
)

+ 3
∂2w̃

∂x̃2
∂3w̃

∂x̃3
∂w̃

∂x̃
+
(∂2w̃
∂x̃2

)2 ∂2w̃
∂x̃2

](
1 +
1

2

(∂w̃′

∂x̃

)2
)}

+ µ̃γ

{
dγ

dτγ

[
∂3w̃

∂x̃3

(
1 +
1

2

(∂w̃′

∂x̃

)2
)
+
(∂2w̃
∂x̃2

)2∂w̃
∂x̃

]
∂w̃

∂x̃

∂2w̃

∂x̃2

}
= q̃

(2.17)

with dimensionless boundary conditions for x̃ = 0, w̃ = w̃′ = 0 and for x̃ = 1

− α
(∂2w̃(1, τ)
∂τ2

+ η
∂3w̃(1, τ)

∂τ2∂x̃

)
+
∂3w̃(1, τ)

∂x̃3
+
∂3w̃(1, τ)

∂x̃3

(∂w̃(1, τ)
∂x̃

)2
+
∂w̃

∂x̃

(∂2w̃(1, τ)
∂x̃2

)2

+ µ̃γ

{
dγ

dtγ

[
∂3w̃(1, τ)

∂x̃3

(
1 +
1

2

(∂w̃(1, τ)
∂x̃

)2
)](
1 +
1

2

(∂w̃(1, τ)
∂x̃

)2
)}

− µ̃γ

{
dγ

dtγ

[
∂2w̃(1, τ)

∂x̃2

(
1 +
1

2

(∂w̃(1, τ)
∂x̃

)2
)]
∂2w̃(1, τ)

∂x̃2
∂w̃(1, τ)

∂x̃

}
= 0

− (αη2 + β)

[
∂2w̃(1, τ)

∂τ2

(
1 +

(∂w̃(1, τ)
∂x̃

)2
)
+ 2

(∂2w̃(1, τ)
∂τ∂x̃

)2∂w̃(1, τ)
∂x̃

]

−

[
∂2w̃(1, τ)

∂x̃2
+
∂2w̃(1, τ)

∂x̃2

(∂w̃(1, τ)
∂x̃

)2
]

− µγ

{
dγ

dtγ

[
∂2w̃(1, τ)

∂x̃2

(
1 +
1

2

(∂w̃(1, τ)
∂x̃

)2
)](
1 +
1

2

(∂w̃(1, τ)
∂x̃

)2
)}
= 0

(2.18)
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The approximate solution is assumed in the form of the first eigenfunction of linearized nonlinear
equation Eq. (2.17). This assumption can be made because the dynamic behavior of the analyzed
beam is studied in the vicinity of the first resonance, and the applied load causes only first mode
vibrations. Moreover, from the structure of Green’s functions of characteristic equations (see
Freundlich, 2019; Podlubny, 1999) and the fact that the first natural frequency is several times
lower then the second natural frequency of the analyzed cantilever beam, it follows that the
first eigenfunction has the greatest impact on the vibration amplitude. Therefore, in the first
step, the equation of motion is simplified, namely, only expressions up to the third order are
considered. Grouping linear and nonlinear terms, we obtain

∂2w̃

∂τ2
+
∂4w̃

∂x̃4
+ µ̃γ

dγ

dτγ

(∂4w̃
∂x̃4

)
+
∂4w̃

∂x̃4

(∂w̃
∂x̃

)2
+ 6
∂2w̃

∂x̃2
∂3w̃

∂x̃3
∂w̃

∂x̃
+ 3

(∂2w̃
∂x̃2

)3

+ µ̃γ
{ dγ

dτγ

[1
2

∂4w̃

∂x̃4

(∂w̃
∂x̃

)2
+ 3
∂2w̃

∂x̃2
∂3w̃

∂x̃3
∂w̃

∂x̃
+
(∂2w̃
∂x̃2

)3]
+
dγ

dτγ

(∂3w̃
∂x̃3

)∂w̃
∂x̃

∂2w̃

∂x̃2

}
= q̃

(2.19)

Using the first mode approximation, namely w̃(x̃, τ) =W1(x̃)ξ1(τ)

W1D
(2)(ξ1) +W

′′′′

1 ξ1 + µ̃γW
′′′′

1 D
(γ)(ξ1) +W

′′′′

1 ξ1(W
′

1ξ1)
2 + 6W ′′1 ξ1W

′′′

1 ξ1W
′

1ξ1

+ 3(W ′′1 ξ1)
3 + µ̃γ

[
D(γ)

(1
2
W ′′′′1 ξ1(W

′

1ξ1)
2 + 3W ′′1 ξ1W

′′′

1 ξ1W
′

1ξ1 + (W
′′

1 ξ1)
3
)

+D(γ)(W ′′′1 ξ1)W
′

1ξ1W
′′

1 ξ1
]
= q̃

(2.20)

where W1 is the first eigenfunction of linearized nonlinear equation (2.17).
Next, multiplying both sides by W1, substituting the relationship W

′′′′(x̃) = k̂4W (x̃) (Eq.
(2.27)), and integrating from 0 to 1, we obtain an equation of the generalized coordinate

D(2)(ξ1) + k̂
4ξ1 + µ̃γ k̂

4D(γ)(ξ1) + a3ξ
3
1 + b3µ̃γD

(γ)(ξ31) + b2µ̃γD
(γ)(ξ1)ξ

2
1 = Q (2.21)

where

a3 =

∫ 1
0 k̂
4W 21 (W

′

1)
2 dx̃+ 6

∫ 1
0 W

′′

1W
′′′

1 W
′

1W1 dx̃+ 3
∫ 1
0 (W

′′

1 )
3W1 dx̃∫ 1

0 W
2
1 dx̃

b2 =

∫ 1
0 W

′′′

1 W
′

1W
′′

1W1 dx̃

inf10W
2
1 dx̃

Q =

∫ 1
0 q̃(x̃, τ)W1 dx̃∫ 1
0 W

2
1 dx̃

b3 =

∫ 1
0
1
2 k̂
4W 21 (W

′

1)
2 dx̃+ 3

∫ 1
0 W

′′

1W
′′′

1 W
′

1W1 dx̃+
∫ 1
0 (W

′′

1 )
3W1 dx̃∫ 1

0 W
2
1 dx̃

(2.22)

As was mentioned earlier, the approximate solution to Eq. (2.20) is in the form of linear modes
of linearized Eq. (2.19). This linearized equation has a form

∂2w̃

∂τ2
+
∂4w̃

∂x̃4
+ µγ

dγ

dτγ

(∂4w̃
∂x̃4

)
= q̃ (2.23)

with linearized boundary conditions, namely, for the clamped beam end x̃ = 0

w̃(0, τ) =
∂w̃(0, τ)

∂x̃
= 0 (2.24)

and for x̃ = 1

α
(∂2w̃(1, τ)
∂τ2

+ η
∂3w̃(1, τ)

∂τ2∂x̃

)
−

(∂3w̃(1, τ)
∂x̃3

+ µ̃γ
dγ

dτγ
∂3w̃(1, τ)

∂x̃3

)
= 0

αη
∂2w̃(1, τ)

∂τ2
+ (αη2 + β)

∂3w̃(1, τ)

∂τ2∂x̃
+
∂2w̃(1, τ)

∂x̃2
+ µ̃γ

dγ

dτγ
∂2w̃(1, τ)

∂x̃2
= 0

(2.25)
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The solution to the problem formulated by Eqs. (2.23)-(2.25) is sought in the form of a convergent
series of the dimensionless beam eigenfunctions

w̃(x̃, τ) =
∞∑

n=1

ξn(τ)Wn(x̃) (2.26)

whereWn(x̃) is the n-th eigenfunction of the beam, ξn(τ) is the n-th time depending generalized
coordinate (Meirovitch, 1967).
The functionsWn(x̃) can be determined with the help of a well-known procedure, i.e. by solv-

ing Eq. (2.23) with its right-hand side equal to zero (homogeneous equation). Namely, utilizing
separation of variables, the subsequent equation may be obtained

W ′′′′(x̃)− k̂4W (x̃) = 0 (2.27)

The solution to equation above (2.27) is sought as

W (x̃) = A sin(k̂x̃) +B cos(k̂x̃) + C sinh(k̂x̃) +D cosh(k̂x̃) (2.28)

where A, B, C, D are arbitrary unknown constants.
Using the first two boundary conditions Eq. (2.24), the following relations between the

constants may be found, namely, A = −C and B = −D. Then, using these relationships and
the next two boundary conditions Eq. (2.25), the following system of equations for constants A
and B is derived

A[αk̂(sin k̂ − sinh k̂) + αk̂2η(cos k̂ − cosh k̂)− (cos k̂ + cosh k̂)]

+B[αk̂(cos k̂ − cosh k̂)− αk̂2η(sin k̂ + sinh k̂)− (sin k̂ − sinh k̂)] = 0

A[αηk̂2(sin k̂ − sinh k̂) + (αη2 + β)k̂3(cos k̂ − cosh k̂) + sin k̂ + sinh k̂]

+B[αηk̂2(cos k̂ − cosh k̂)− (αη2 + β)k̂3(sin k̂ + sinh k̂) + cos k̂ + cosh k̂] = 0

(2.29)

The system of equations presented above, Eq. (2.29), is satisfied if the determinant of the coef-
ficients matrix of the system of equation equals zero. Then, equating the determinant of (2.29)
to zero, after long and arduous mathematical transformations, the characteristic equation of the
system can be obtained

− k̂4αβ(1 − cos k̂ cosh k̂) + k̂3(β + αη2)(cos k̂ sinh k̂ + sin k̂ cosh k̂)

+ 2αηk̂2 sin k̂ sinh k̂ − α(cos k̂ cosh k̂ − sin k̂ cosh k̂)− cos k̂ cosh k̂ − 1 = 0
(2.30)

Characteristic equation (2.30) has of a countable infinitive set of roots k̂n corresponding to the
n-th natural undamped dimensionless frequency of the beam. Next, substituting the derived
roots into Eqs. (2.27) and (2.29), the expression for eigenfunctions can be obtained

Wn(x̃) = An[sin(k̂nx̃)− sinh(k̂nx̃)− λn(cos(k̂nx̃)− cosh(k̂nx̃))] (2.31)

where

λn =
αk̂n(sin k̂n − sinh k̂n) + αk̂

2
nη(cos k̂n − cosh k̂n)− (cos k̂n + cosh k̂n)

αk̂n(cos k̂n − cosh k̂n)− αk̂2nη(sin k̂n + sinh k̂n)− (sin k̂n − sinh k̂n)

Eigenfunctions (2.31) must satisfy the orthogonality condition. Using the well-known standard
procedure (see e.g. Meirovitch, 1967), it can be shown that the orthogonality condition has a
following form

1∫

0

Wm(x̃)Wn(x̃) dx̃+ α[Wn(1)Wm(1) + ηW
′

n(1)Wm(1)]

+ αηWn(1)W
′

m(1) + (αη
2 + β)W ′n(1)W

′

m(1) = δmn

(2.32)
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Employing orthogonality condition Eq. (2.31) and expression for eigenfunction, Eq. (2.31), co-
efficients An in Eq. (2.31) can be calculated as

An =
1√∫ 1

0 W̃
2
n(x̃); dx̃+ α[W̃

2
n(1) + 2ηW̃

′

n(1)W̃n(1)] + (αη
2 + β)W̃ ′2n (1)

(2.33)

Therefore, the functionW1 in Eqs. (2.20) and (2.22) is determined, thus the approximate solution
to the problem described by Eq. (2.19) may be obtained.

Fractional differential equation (2.21) can be solved numerically using a method similar to
the method presented in the book by Diethelm (2010). In this method, the fractional differen-
tial equation is converted to a system of mixed ordinary and fractional differential equations,
each of the order 0 < γ ¬ 1. The converted system of equations contains integer and fractional
order differential equations, which can be partitioned into two separated systems of equations
and solved simultaneously (Freundlich, 2021). The system of equations is solved using own
author’s procedure implemented in the Matlab package. The fractional order differential equa-
tions are integrated using the trapezoidal rule for the fractional Caputo derivative worked out
by Diethelm et al. (2005), while the integer order equations are integrated using the Adams-
-Bashforth-Moulton predictor-corrector method (see e.g Chapra and Canale, 2010). Roots of
the nonlinear characteristic equation of system (2.30) are computed using Matlab procedure
“fzero”. The knowledge of damped natural frequencies are useful in dynamic analysis of the
system. The natural damped frequencies of linearized sytem (2.23) can be calculated solving the
characteristic equation associated with linearized fractional differential equation (2.21) with the
zero right hand side, namely

s2n + µ̃γ k̂
4sγn + k̂

4s = 0 (2.34)

Characteristic equation (2.34) has two conjugate complex roots located in the left half-plane
of the complex domain (Rossikhin and Shitikova, 1997). The absolute value of the real part
of the root is the damping coefficient, whereas the imaginary part of the root is the natural
damped frequency (Rossikhin and Shitikova, 1997). Equation (2.34) is solved using author’s
own procedure based on Newton’s method of solving nonlinear complex equations (Chapra and
Canale, 2010).

3. Example of numerical calculations and discussion

To demonstrate the usefulness of the method presented in the previous Section, examplary
calculations of transient vibrations of the analyzed beam have been performed. The relationships
obtained in the preceding Section are used to study the impact of the fractional derivative order
and other parameters of the system on its transient vibrations. Additionally, responses of linear
and nonlinear systems are studied and compared. Since it is important to know the modal
damping and damped natural frequencies in the analysis of system dynamics, the effect of the
order of the fractional derivative on the damping coefficient and damped natural frequency of
the system is first determined. As mentioned previously, the damping coefficient and natural
damped frequency of the system are determined by real and imaginary parts of the roots of Eq.
(2.34), respectively. Numerical calculations are performed for various orders of the fractional
derivative and for beam parameters α = 1, β = 0.005, η = 0.05 and for two damping coefficients,
µ̃γ = 0.008 and 0.016. Computed relationships between the calculated roots and the order of
the fractional derivative are shown in Figs. 3 and 4.
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Fig. 3. The real part of the roots of characteristic equation (2.34), α = 1, β = 0.005, η = 0.05:
(a) µ̃γ = 0.008, (b) µ̃γ = 0.016

Fig. 4. The imaginary part of the roots of characteristic equation (2.34), α = 1, β = 0.005, η = 0.05:
(a) µ̃γ = 0.008, (b) µ̃γ = 0.016

It can be noticed from Fig. 3 that the damping coefficient exponentially increases with an
increase of the order of the fractional derivative. The increase is significantly greater for the
second mode of vibration. On the contrary, the damped natural frequency practically does not
depend on the change of the order of the fractional derivative (see Fig. 4).
As noted before, in some vibration studies of the beam with attached at its end a heavy

mass element, it is necessary to take into account the eccentricity. Therefore, sample calculations
showing the effect of eccentricity on the damping coefficient and natural damped frequency are
made. The calculations are made for various η coefficients, for γ = 0.5, α = 1, β = 0.005, and
for two damping coefficients, µ̃γ = 0.008 and 0.016. An impact of the eccentricity coefficient η
on the damping coefficient and damped natural frequency is shown in Figs. 5 and 6.
As can be seen from Figs. 4 and 6, an increase in the order of the fractional derivative results

in a decrease of damping coefficients and natural damped frequencies. The decrease is greater
for the second mode of vibrations. A relative difference between damped natural frequencies for
η = 0 and η = 0.2 is about 20% for the fist mode of vibration, and about 24% for the second
mode of vibration.
Next, having determined damped natural frequencies of the linearized system, the impact

of the order of the fractional derivative on transient forced vibrations of the analyzed beam is
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Fig. 5. The real part of the roots of characteristic equation (2.34), γ = 0.5, α = 1, β = 0.005:
(a) µ̃γ = 0.008, (b) µ̃γ = 0.016

Fig. 6. The imaginary part of the roots of characteristic equation (2.34), γ = 0.5, α = 1, β = 0.005:
(a) µ̃γ = 0.008, (b) µ̃γ = 0.016

investigated. Linear and nonlinear transient vibrations are examined. In the first stage, linear
and nonlinear beam responses to the harmonic excitation of amplitude F0 are computed. The
excitation frequency is assumed to be the natural damped frequency of the linearized system
determined earlier (see Fig.4). These calculations are performed for the dimensionless beam
parameters α = 1, β = 0.005, η = 0.05, two damping coefficients, µ̃γ = 0.008 and 0.016, and
various orders of the fractional derivative γ = 0.25, 0.5, 0.75, 1.0. The calculated responses of
the linearized system to the harmonic excitation are shown in Fig. 7, whereas for the nonlinear
system are shown in Fig. 8. As can be seen from Fig. 7, the maximum amplitudes of the linearized
responses increase monotonically until their values stabilize. Furthermore, vibration amplitudes
are greater for lower values of the order of the fractional derivative γ for both coefficients µ̃γ
(Fig. 7). In contrast, the maximum amplitudes of the nonlinear responses oscillate until their
values stabilize (see Fig. 8). Furthermore, it can be seen from Fig. 8 that the oscilations of the
maximum amplidudes of nonlinear responses are greater for lower values of the order of the
fractional derivative γ. Similarly, as in the case of linear responses, the vibration amplitudes are
lower as the order of the fractional derivative γ increases.
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Fig. 7. Linear beam response, harmonic excitation: (a) µ̃γ = 0.008, (b) µ̃γ = 0.016

Fig. 8. Nonlinear beam response, harmonic excitation: (a) µ̃γ = 0.008, (b) µ̃γ = 0.016

In the next step, the transient responses of the beam to an excitation force of varying angular
frequency are studied. The excitation force function is described by the following expression

F (τ) = F0 sin
Eτ2

2
(3.1)

where E is dimensionless angular acceleration.

The beam responses to excitation described by Eq. (3.1) are computed for the dimensionless
angular acceleration E = 0.1, dimensionless beam parameters γ = 0.5, α = 1, β = 0.005,
η = 0.05, two damping coefficients, µ̃γ = 0.008 and 0.016, and the order of the fractional
derivative γ = 0.25, 0.5, 0.75, 1.0. The calculated responses are shown in Fig. 9. The obtained
responses of the beam show that the maximum amplitudes of vibrations, after reaching the
maximum value, decrease monotonically. The decrease is faster for higher orders of the fractional
derivative γ and greater coefficient µ̃γ . As can be seen from Fig. 9, an increase of the order of
the fractional derivative decreases the response amplitudes.

Analyzing the results shown in Figs. 7-9, it can be concluded that the order of the fractional
derivative has a similar effect on vibration amplitudes as the damping coefficient or the time
constant µγ , i.e., increasing the order of the fractional derivative γ causes a decrease in the
vibration amplitudes.
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Fig. 9. Nonlinear beam response, transient excitation, E = 0.1; (a) µ̃γ = 0.008, (b) µ̃γ = 0.016

Fig. 10. Nonlinear beam response, harmonic excitation, γ = 0.5: (a) µ̃γ = 0.008, (b) µ̃γ = 0.016

Finally, the effect of amplitude F0 of the sinusoidal forcing force on the transient responses
of the beam is studied. The study is carried out for the order of the fractional derivative γ = 0.5,
µ̃γ = 0.008, 0.016, and amplitudes of the exciting force F0 = 0.002, 0.005, 0.007. The computed
nonlinear responses are presented in Fig. 10.

From Fig. 10 we can see that the oscillation of the maximum amplitude of the response is
higher for higher amplitudes of the exciting force. Additionally, the responses reach the steady-
-state amplitudes after a longer time period for higher forcing amplitudes F0.

4. Conclusions

In this paper, linear and nonlinear transient vibrations of a fractional cantilever beam with an
attached eccentric mass element are presented. The fractional Kelvin-Voigt viscoelastic mate-
rial model is assumed as the beam material. Nonlinear and linear equations of motion of the
beam are derived using Hamilton’s principle. The characteristic equation, modal frequencies,
eigenfunction and orthogonality condition are obtained for linear beam vibrations. The achieved
equations of motion are solved numerically. Numerical calculations are carried out for selected
beam parameters. Transient responses of the beam to the harmonic and linearly time-varying
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increasing frequency of a sinusoidal excitation are calculated. The beam responses to the har-
monic excitation are calculated for linear and nonlinear equations of motion. Comparing the
determined linear and nonlinear responses, it can be seen that the maximum amplitudes of
the linear responses increase monotonically until their values stabilize, whereas the maximum
amplitudes of the nonlinear responses oscillate until their values stabilize.
The obtained nonlinear responses to time-varying frequency of the sinusoidal excitation re-

veal that the maximum vibration amplitudes decrease monotonically after reaching their max-
imum value. The decrease is faster for higher orders of the fractional derivative and greater
dimensionless damping coefficients.

For all obtained results, it can be stated that the maximum amplitudes of vibrations de-
crease as the order of the fractional derivative increases in all performed calculations, which was
expected.
The carried out researches show that he effect of eccentricity on natural frequencies is ap-

proximately linear. Thus, in my opinion, the eccentricity should be taken into account in some
calculations if η is greater than 0.1.

In further investigations, actual parameters of the fractional Kelvin-Voigt model correspond-
ing to the system analyzed should be determined by conducting appropriate experimental ex-
aminations.
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